Enhancement of Ca current in the accessory radula closer muscle of Aplysia californica by neuromodulators that potentiate its contractions.

نویسندگان

  • V Brezina
  • C G Evans
  • K R Weiss
چکیده

A major goal of neuroscience is to identify the neural and cellular mechanisms of behavior and its plasticity. Progress toward this goal has come particularly from work with a small number of tractable model preparations. One of these is the simple neuromuscular circuit consisting of the accessory radula closer (ARC) muscle of the mollusk Aplysia californica and its innervating motor and modulatory neurons. Contraction of the ARC muscle underlies a component of Aplysia feeding behavior, and plasticity of the behavior is in large part due to modulation of the amplitude and duration of the contractions of the muscle by a variety of modulatory neurotransmitters and peptide cotransmitters, among them the small cardioactive peptides (SCPs), myomodulins (MMs), and serotonin (5-HT). We have studied single dissociated ARC muscle fibers in order to determine whether modulation of membrane ion currents in the muscle might underlie these effects. First, we confirmed that the dissociated fibers were functionally intact: just as with the whole ARC muscle, their contractions were potentiated by 5-HT and SCPB and potentiated as well as depressed by MMA, and their cAMP content was greatly elevated by 5-HT, SCPA and SCPB, and to a lesser extent by MMA and MMB. Next, using voltage-clamp techniques, we found that two ion currents present in the fibers were indeed modulated. The fibers possess a dihydropyridine-sensitive, high-threshold "L"-type Ca current. This current was enhanced by the modulators that potentiate ARC-muscle contractions--5-HT, SCPA and SCPB, and MMA and MMB--but not by buccalinA, a modulator that does not act directly on the ARC muscle. All of the potentiating modulators, as well as elevation of cAMP in the fibers by forskolin or a cAMP analog, maximally enhanced the current about twofold and mutually occluded each other's effects. Since the Ca current supplies Ca2+ necessary for contraction of the muscle, the enhancement of the current is a good candidate to be a major mechanism of the potentiation of the contractions. In the following article we report that the modulators also, to different degrees, activate a distinctive K current and thereby depress the contractions. Net potentiation or depression then depends on the balance between the relative strengths of the modulation of the two ion currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of K current in the accessory radula closer muscle of Aplysia californica by neuromodulators that depress its contractions.

The neural and cellular mechanisms of plasticity apparent in the feeding behavior of the mollusk Aplysia californica have been extensively studied in a simple neuromuscular circuit consisting of the accessory radula closer (ARC) muscle and its innervating motor and modulatory neurons. In this circuit, the plasticity is largely due to modulation of the amplitude and duration of the contractions ...

متن کامل

Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia.

The accessory radula closer (ARC) muscle of Aplysia has long been studied as a typical "slow" muscle, one that would be assumed to respond only to the overall, integrated spike rate of its motor neurons, B15 and B16. The precise timing of the individual spikes should not much matter. However, but real B15 and B16 spike patterns recorded in vivo show great variability that extends down to the ti...

متن کامل

Multiple presynaptic and postsynaptic sites of inhibitory modulation by myomodulin at ARC neuromuscular junctions of Aplysia.

The functional activity of even simple cellular ensembles is often controlled by surprisingly complex networks of neuromodulators. One such network has been extensively studied in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle is innervated by two motor neurons, B15 and B16, which release modulatory peptide cotransmitters to shape ACh-mediated contractions of ...

متن کامل

Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications.

Many neurons contain multiple peptide cotransmitters in addition to their classical transmitters. We are using the accessory radula closer neuromuscular system of Aplysia, which participates in feeding in these animals, to define the possible consequences of multiple modulators converging on single targets. How these modulators are released onto their targets is of critical importance in unders...

متن کامل

Costorage and corelease of modulatory peptide cotransmitters with partially antagonistic actions on the accessory radula closer muscle of Aplysia californica.

Many neurons that contain a classical neurotransmitter also contain modulatory peptides, but it has been difficult to establish unequivocally that these peptides are functional cotransmitters. Here, we provide evidence for functional cotransmission in a neuromuscular system of Aplysia. Using immunocytochemical techniques, we localize members of two peptide families, the small cardioactive pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 1994